ESA-Projekt SAILOR: Mit Schüssen auf Segel dem Schrott auf der Spur

credit: HPS GmbH

HPS mit ADEO-KnowHow im Dienste des ungarischen ESA-Primes C3S

Es scheint geradezu ein Grundgesetz der Natur zu sein: Wo und wie auch immer der Mensch aktiv ist, zeugt am Ende Müll in Mengen von seinem Wirken. Zur Verdrängung des Problems sind im Laufe der Zeit viele terrestrische Areale, die Weltmeere und seit wenigen Jahrzehnten auch der Weltraum selbst zur Müllkippe avanciert. Gerade letzteres droht jedoch, sich nun radikal zu rächen; denn der fliegende Schrott aus vorangegangenen Raumfahrtmissionen wird zunehmend zur Gefahr für alle weiteren Aktivitäten besonders auf den am stärksten frequentierten Orbits zwischen 200 und 1.200 Kilometern. 

Während große Trümmer wie etwa ausgebrannte Raketenstufen noch am ehesten zu detektieren und von neuen Gästen auf der Umlaufbahn zu umschiffen sind, sind es gerade die kleinen, oft durch vorangegangene Kollisionen auf 0,1 mm bis 5 cm geschrumpften Geschosse, von denen die größte Bedrohung ausgeht. Denn mit abnehmender Größe nimmt ihr Fluss deutlich zu mit der Konsequenz, dass die sehr viel häufigeren Einschläge von Trümmern dieser Größe ein weitaus größeres Risiko für den Raumfahrtbetrieb darstellen können als die dramatischeren katastrophalen Störfälle.

Vom Boden aus lassen sich aber eben nur größere Trümmer beobachten und verfolgen – ausgerechnet im kritischen Bereich von 0,1 bis 50 mm jedoch nicht. Deshalb sind Messungen in situ, also direkt im Orbit, dringend erforderlich, um die fliegende Müllkippe der Erde von Messie Mensch überhaupt erst einmal hinreichend zuverlässig beschreibbar zu machen. 

Die ESA hat nach kritischer Abwägung der Alternativen ihre Aufmerksamkeit auf einen möglichen großflächigen Detektor gerichtet; er basiert auf den erfolgreichen ADEO-Deorbit-Segeln aus dem Hause HPS. Werden die Segelmembrane nun mit akustischen Sensoren und Kameras an Bord ausgestattet, kann man den Staubfluss in dem erforderlichen Größenbereich messen. Der Name des Programms: SAILOR – Sail Array for Impact Logging in Orbit.

Das Raumfahrzeug besteht aus zwei großen Detektorflächen mit 100 cm Abstand voneinander. Die beiden Segel haben eine exponierte Oberfläche von 25 m2; im ADEO-Programm sind sie die Hauptakteure der großen Dragsail-Versionen unter dem Namen ADEO-L. Die Membrane sind etwa 10 μm dick und werden von ausfahrbaren Querauslegern in Position gehalten. Die Ausleger werden während des Starts zusammen mit den Segelmembranen verstaut und in der Umlaufbahn ausgefahren. Das Entfaltmodul, auf dem die Ausleger und Segel montiert sind, besteht aus einigen Mechanismen und einem Motor, der die Auslegerarme nach außen schiebt. Ein System von Kameras wird darauf montiert, um die entstehenden Löcher auf der Innenfläche beider Segelmembrane zu dokumentieren. Um einen Aufprall in Echtzeit zu bemerken, werden akustische Sensoren an den Segeln befestigt. Das Zusammenspiel der technischen Ausrüstung von SAILOR erlaubt schlussendlich die Bestimmung der Dichte, Geschwindigkeit und Flugbahn der kleinen Trümmerteile.

Das ambitionierte ESA-Projekt SAILOR befindet sich derzeit im Übergang von der Phase-A-Studie zu Phase B1, die auch den Bau von Breadboard-Modellen des Raumfahrzeugs und seiner Elektronik sowie die damit verbundenen Testprogramme umfassen wird. Des weiteren sind damit diese Schritte verbunden:

  • Herstellung von Testmustern der vorgeschlagenen Membran, ausgerüstet mit Akustiksensoren
  • Tests der Segelfaltung für die Verstauung
  • Prüfung der Ausleger- und Segelentfaltungsmechanismen
  • Ein Hochgeschwindigkeits-Aufpralltestprogramm zum Test der Segel und Sensoren
  • Erprobung eines Kamerasystems zur Abbildung von Löchern im Segel
  • Vollständiger Entwurf des Raumfahrzeugs unter Einbeziehung der Zulieferer für alle kritischen Komponenten und Teilsysteme.

Insgesamt sollen die Spezifizierungen des Projektes in dieser Phase dazu führen, dass es auf der ESA-Ministerratstagung im November 2025 in Bremen zu einem positiven Entscheid über die Fortsetzung bis zum geplanten Start 2031/2032 einer dreijährigen Mission auf 850 km Höhe kommt. Eine kleine Precurser-CubeSat-Mission, getauft nach der Segelbootsgattung OPTIMIST, soll bereits 2027/2028 die Sensorik mittels eines ca. 10 m2 großen Membrans als Risk Mitigation für die full-scale-Mission testen.

Dafür steht auch die Industriestruktur hinter SAILOR. Denn als Prime eines ESA-Projektes dieser Art fungiert erstmalig mit C3S ein führendes Raumfahrtunternehmen Ungarns und bedient sich dabei der Expertise des ADEO-Erfinders HPS GmbH als Subkontraktor für das entfaltbare Membran-Subsystem. Auch für den HPS-Ableger in Rumänien sind seitens C3S Arbeitsanteile geplant. Dazu HPS-CEO Ernst K. Pfeiffer: „Unsere große Begeisterung, mit der wir unsere Rolle bei diesem Projekt übernommen haben, ruht auf drei Säulen: Erstens ist es in der Sache existentiell wichtig für die Raumfahrt insgesamt, zweitens ist es für uns als HPS eine Gelegenheit, die Vielseitigkeit der ADEO-Technologie aus unserem Haus eindrucksvoll unter Beweis zu stellen, und drittens halten wir es in Europa für eminent wichtig, dass so die Industrietalente Ungarns und Rumäniens endlich angemessen ins Licht gerückt werden, und das auch noch in einer gemeinsamen Mission. Wir als HPS arbeiten mit Freude unter der Projektführung von C3S.“

 

Quelle: www.HPS-GmbH.com